If it's not what You are looking for type in the equation solver your own equation and let us solve it.
q^2+9q-55=0
a = 1; b = 9; c = -55;
Δ = b2-4ac
Δ = 92-4·1·(-55)
Δ = 301
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-\sqrt{301}}{2*1}=\frac{-9-\sqrt{301}}{2} $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+\sqrt{301}}{2*1}=\frac{-9+\sqrt{301}}{2} $
| 7^(x+5)=49^x | | -8/1=12/2x-3 | | 5x+6x-54=36-7x | | 8r^2+22r+14=0 | | 75=p+74 | | 8x+9x-100=125-8x | | 3t=t=46 | | √7x+4=√13x+25 | | 24g^2+22g+4=0 | | 2x+0.6=11.0 | | z^2+12+27=0 | | 22=10y | | 2.27x−0.27x+0.6=11.0 | | 19-(2c+3)=2c(c+3)+c | | (4r+2)(2r-3)=0 | | (x+1)+(x+2)+(x+5)=8 | | x²+11x+10= | | -6r+5r=0 | | 2(4x+4)=24 | | 15x-4.5x+9.5=20.0 | | b^2+22b+121= | | 2(4x+4)=31 | | (4h+4)(h-6)=0 | | 9=2f+1 | | 2(4x+4)=30 | | 2(4x+4)=29 | | 2(4x+4)=28 | | 2(4x+4)=27 | | -12w=144 | | 3-(-3x)=6 | | (6h-6)(h+8)=0 | | 5(20x+25)=1225 |